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Abstract 

Objectives Given the increasing incidence of negative outcomes during pregnancy, our research team conducted 
a dose-response systematic review and meta-analysis to investigate the relationship between ultra-processed foods 
(UPFs) consumption and common adverse pregnancy outcomes including gestational diabetes mellitus (GDM), 
preeclampsia (PE), preterm birth (PTB), low birth weight (LBW), and small for gestational age (SGA) infants. UPFs are 
described as formulations of food substances often modified by chemical processes and then assembled into ready-
to-consume hyper-palatable food and drink products using flavors, colors, emulsifiers, and other cosmetic additives. 
Examples include savory snacks, reconstituted meat products, frozen meals that have already been made, and soft 
drinks.

Methods A comprehensive search was performed using the Scopus, PubMed, and Web of Science databases 
up to December 2023. We pooled relative risk (RR) and 95% confidence intervals (CI) using a random-effects model.

Results Our analysis (encompassing 54 studies with 552,686 individuals) revealed a significant association 
between UPFs intake and increased risks of GDM (RR = 1.19; 95% CI: 1.10, 1.27;  I2 = 77.5%; p < 0.001; studies = 44; 
number of participants = 180,824), PE (RR = 1.28; 95% CI: 1.03, 1.59;  I2 = 80.0%; p = 0.025; studies = 12; number of par-
ticipants = 54,955), while no significant relationships were found for PTB, LBW and SGA infants. Importantly, a 100 g 
increment in UPFs intake was related to a 27% increase in GDM risk (RR = 1.27; 95% CI: 1.07, 1.51;  I2 = 81.0%; p = 0.007; 
studies = 9; number of participants = 39,812). The non-linear dose-response analysis further indicated a positive, 
non-linear relationship between UPFs intake and GDM risk  Pnonlinearity = 0.034,  Pdose-response = 0.034), although no such 
relationship was observed for PE  (Pnonlinearity = 0.696,  Pdose-response = 0.812).

Conclusion In summary, both prior to and during pregnancy, chronic and excessive intake of UPFs is associated 
with an increased risk of GDM and PE. However, further observational studies, particularly among diverse ethnic 
groups with precise UPFs consumption measurement tools, are imperative for a more comprehensive understanding.
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Introduction
The Centers for Disease Control and Prevention’s 
(CDC’s) 2022 National Center for Health Statistics report 
alarmingly indicates a persistent rise in pregnancy-
related mortality in the US across three decades, high-
lighting significant disparities in “race” and maternal age 
[1]. This trend underscores the pivotal role of addressing 
common pregnancy adverse outcomes as a critical com-
ponent of maternal morbidity and mortality prevention 
strategies [2].

Promoting healthy dietary habits during pregnancy 
is imperative to meet the increased physiological needs 
of expectant mothers. The phenomenon of “nutritional 
transition”, characterized by a shift towards high-calorie, 
low-micronutrient foods, culminates in malnutrition and 
obesity [3]. The significance of maternal nutrition in pre-
natal care is heavily emphasized by researchers as a pre-
ventive measure against adverse pregnancy outcomes [4]. 
The consumption of diets rich in refined carbohydrates, 
fats, and sweets is linked to an increased risk of gesta-
tional diabetes mellitus (GDM) and preterm birth (PTB) 
[5]. Moreover, such dietary patterns adversely affect 
women’s health by exacerbating hypertensive disorders 
and contributing to conditions like preeclampsia (PE), 
low birth weight (LBW), and small-for-gestational-age 
(SGA) infants [6]. Recognizing the detrimental impact 
of these unhealthy dietary patterns, it becomes crucial to 
consider the role of food processing in the maternal diet.

The NOVA classification, a framework for grouping 
edible substances, categorizes foods into four groups 
based on the extent and purpose of food processing 
applied, ranging from unprocessed or minimally pro-
cessed foods to ultra-processed foods (UPFs) [7, 8]. UPFs 
are characterized by their high content of additives such 
as preservatives, artificial flavors, colors, and sweeteners, 
and are typically devoid of whole or minimally processed 
ingredients [9]. The consumption of UPFs has been asso-
ciated with higher risks of obesity, hypertension, cancer, 
and other chronic diseases [8, 10–12]. These foods are 
implicated in disrupting insulin signaling, promoting 
excessive energy intake, weight gain, and increased uri-
nary concentrations of phthalate metabolites, which act 
as endocrine disruptors [13, 14]. In the context of adverse 
pregnancy outcomes, recent meta-analytic work high-
lighted a heightened risk of GDM (odds ratio (OR): 1.48; 
95% confidence interval (CI): 1.17, 1.87) and PE (OR: 1.28; 
95% CI: 1.15, 1.42) among high UPFs consumers, with no 
significant associations observed in LBW, PTB, and Large 
for Gestational Age (LGA) [15]. However, the previous 
meta-analysis did not encompass a comprehensive set of 
extant studies for each adverse outcome (as evidenced by 
the inclusion of only 10 studies for GDM in contrast to 
the 44 studies incorporated in our current investigation), 

thereby underscoring the challenge posed by the unuti-
lized data in previous analyses. Additionally, recent stud-
ies of relevance have emerged [16–18] and the preceding 
meta-analytic work did not include a dose-response 
analysis [15]. The integration of dose-response analysis 
offers benefits such as facilitating the formulation of pub-
lic health directives, augmenting precision, and quanti-
fying the dose-response relationship. Consequently, we 
decided to conduct an updated dose-response systematic 
review and meta-analysis to rigorously evaluate the asso-
ciation between UPFs consumption and common adverse 
pregnancy outcomes, including GDM, SGA, LBW, PTB, 
and PE.

Methods
This systematic review and meta-analysis was con-
ducted according to the guidelines specified in the 2020 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) [19]. The study protocol was 
registered with the International Prospective Register of 
Systematic Reviews Database (PROSPERO) under the 
registration number CRD42023486135.

Literature search and selection
A systematic literature search was done employing Pub-
Med/MEDLINE, ISI Web of Science and Scopus, with 
no date restrictions, up to December 6, 2023. The search 
keywords and strategy are reported in Supplementary 
Table 1. Data from grey literature sources such as notes, 
conference abstracts, reviews, case reports, letters, short 
surveys, and reports were obtained from a manual search 
of references mentioned in original research articles pub-
lished in one of these databases. To augment the breadth 
of research identified, references within reviews and per-
tinent studies that met eligibility criteria were further 
subjected to manual examination.

Inclusion and exclusion criteria
Inclusion criteria were defined as follows: a) observa-
tional studies (cohort, case-control, or cross-sectional,) 
in adult subjects (≥18 years) reporting data on the asso-
ciation between UPFs intake and the risk of adverse preg-
nancy outcomes (including GDM PE, PTB, LBW, and 
SGA infants), and reporting effect estimates in the form 
of hazard ratio (HR), relative risk (RR), or odds ratios 
(OR), each with at least 95% confidence interval (95% CI). 
Exclusion criteria included: a) studies done in children 
and adolescents (< 18 years), b) studies without sufficient 
data (for instance, those failing to report effect sizes or 
95% CIs, instead reporting beta coefficients), and c) those 
with no relevant exposure. Study titles and abstracts, as 
well as full-text reviews from database searches meeting 
the inclusion criteria, were assessed by two reviewers (ST 
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and SM). Any disagreements regarding study inclusion/
exclusion criteria were resolved by consensus following 
discussion. The PICOS tool for each article was reported 
in Supplementary Table 2.

Data extraction
Two investigators (FJ and SM) extracted the following 
data, based on a standardized extraction form, from the 
studies that met the inclusion criteria: a) first author’s 
name, year of publication, and country of origin; b) study 
characteristics (design, follow-up period, and source 
of data on health status); c) participant characteristics 
(number of participants/cases, age and sex); d) methods 
of evaluating UPFs intake; e) the risk of adverse preg-
nancy outcomes; f ) main study results (outcomes), and 
g) covariates utilized for adjustments in multivariate 
analyses. Any disagreement regarding data extraction 
characteristics was decided by consensus following the 
discussion.

Quality assessment
Applying the Newcastle-Ottawa Scale (NOS) [20], two 
investigators assessed the quality of each shortlisted 
study. The NOS was specifically chosen due to its com-
prehensive framework designed to evaluate the qual-
ity of non-randomized studies. This scale excels in its 
design, content, and user-friendliness, making it particu-
larly suitable for integrating quality assessments into the 
interpretation of meta-analytic results. The NOS scale for 
systematic reviews or meta-analyses, allocating up to 9 
points across three domains: study group selection (four 
points), study group comparability (two points), and 
exposure and outcomes ascertainment for case-control 
or cohort studies (three points). Studies scoring 7–9 are 
deemed high quality/low risk of bias, whereas a score of 
0–3 indicates a high risk of bias. Table 1 shows the con-
sensus from this assessment.

Statistical analyses and data synthesis
Statistical analyses were performed applying STATA 
version 14.0 (StataCorp, College Station, TX, USA) 
and SPSS version 25.0 (IBM, Armonk, NY, USA). The 
RR and 95% CI were established as overall effect sizes 
in this work, similar to effect estimates reported in 
observational articles meeting the inclusion criteria 
for this meta-analysis [21]. The synthesized effect esti-
mates were reported as pooled RR with 95% CI. Due to 
anticipated heterogeneity between studies, effect esti-
mates were calculated using the DerSimonian-Laird 
weighted random-effects model [22]. A pairwise meta-
analysis combined the effect size results for the high-
est and lowest categories of UPFs intake. Heterogeneity 
among the articles was examined by the Cochran Q 

and I-squared  (I2) statistics, with the  I2 value estimated 
from [(Q-df )/Q × 100%]; where Q is the χ2 value and 
df the corresponding degrees of freedom. Between-
study heterogeneity was considered significant when 
the Cochran Q statistic was significant (p < 0.05) or if 
 I2 > 50%; specifically, low, moderate, high, and extreme 
heterogeneity was defined based on the  I2 statistics cut-
offs of < 25%, 25–50%, 50–75%, and >75%, respectively.

Furthermore, subgroup analyses were conducted to 
evaluate any potential effects due to the study design 
(cross-sectional, case-control, or cohort), UPFs classi-
fication method (NOVA food classification, Western-
type diet pattern, fast-food, or sweets consumption), the 
study region of origin (North America, South America, 
Asia, Europe, and Australia), pre-pregnancy body mass 
index (< 25 kg/m2 and ≥ 25 kg/m2) [23, 24], age (< 30 years 
and ≥ 30 years) [24], number of cases (< 100 or ≥ 100), 
number of participants (< 1000 or ≥ 1000), dietary assess-
ment method (food frequency questionnaires [FFQ], 24 h 
recall, or food records), dietary assessment period (pre-
pregnancy, early pregnancy, mid-pregnancy), and other 
covariate adjustments. Sensitivity analysis was conducted 
by omitting each study and evaluating the remaining 
pooled effect estimates. Publication bias was evaluated by 
visual inspection of funnel plots, and formal testing using 
Egger’s regression asymmetry and Begg’s rank correlation 
tests [25, 26], with outcomes considered as significant at 
p < 0.05.

A dose-response meta-analysis was completed to esti-
mate the RRs per 100 g increment in UPFs intake, based 
on the method introduced by Greenland and colleagues 
[27, 28]. For this process, studies needed to report the 
number of cases (i.e., participants with incidence) and 
non-cases (i.e., participants without incidence) or per-
son-years (i.e., the number of people in the study and 
the duration of their participation) as well as the median 
point of UPFs intake across more than three categories of 
intake. Ultimately, a one-stage linear mixed-effects meta-
analysis was undertaken to model the dose-response 
associations, estimating and combining study-specific 
slope lines to obtain an average slope in a single stage. 
This linear mixed-effects meta-analysis includes studies 
with two categories of exposures (at least two effect sizes) 
in the dose-response analysis.

Quality of evidence
The quality of evidence across articles was ranked 
employing the Grading of Recommendations Assess-
ment, Development, and Evaluation (GRADE) working 
group guidelines. The GRADE criteria categorize evi-
dence quality into high, moderate, low, or very low levels 
[29].
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Results
Study characteristics
Our systematic search and examination of refer-
ence lists yielded a total of 3433 records. After omit-
ting duplicates, 2787 articles remained for assessment 
(Fig. 1). A title and abstract review led to the removal 
of 2707 articles. Subsequent full-text assessment of the 
80 remaining studies resulted in the exclusion of a fur-
ther 26 articles for the following reasons: five articles 
reported outcomes not relevant to our research scope, 
six lacked sufficient data, and 15 did not focus on rel-
evant exposure (Supplemental Table  3). Consequently, 

54 studies met our inclusion criteria and were selected 
in the present meta-analysis [16–18, 30–79].

The selected studies (detailed in Supplemental Table 4) 
encompass 38 cohort studies [16, 31, 33–37, 39, 40, 42–
49, 51, 52, 54, 55, 57–62, 65–67, 69–71, 73–75, 78], 11 
case-control studies [17, 18, 30, 32, 34, 50, 63, 66, 68, 72, 
77], and five cross-sectional studies [38, 46, 64, 76, 79]. 
These articles, conducted between 1988 and 2023, origi-
nated from different countries including the USA [33, 36, 
53, 58, 60, 62, 69, 74, 78], the UK [16], China [43, 49, 51, 
71, 73], Brazil [31, 59, 63, 64, 68, 79], Spain [39, 40, 42, 55, 
57], Iran [17, 18, 30, 32, 48, 54, 66, 76, 77], Malaysia [75], 
Palestine [72], Australia [45, 46, 65], Singapore [37, 38], 

Fig. 1 Flow chart of the process of the study selection
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Norway [35, 44, 47], Japan [41, 67], Czech Republic [34], 
Iceland [70] and Denmark [61]. The study-specific, maxi-
mally adjusted RR was reported for 552,686 individuals 
across the included articles and was pooled for meta-
analysis to assess the association between UPFs and the 
risk GDM [16, 32–34, 36, 38–41, 43, 48–51, 53–56, 59, 
60, 64–66, 70–75, 77–79], PE [17, 18, 30, 35, 48, 52, 62, 
69, 74, 76], PTB [31, 37, 44–46, 48, 52, 58, 61, 67], LBW 
[45, 63, 67] and SGA infants [46, 67, 68]. The Newcastle-
Ottawa grade (used for quality assessment) categorized 
27 studies as high quality [17, 33, 35–37, 39–45, 47, 51, 
53, 55, 57, 58, 60, 62, 65, 67, 69, 74, 75, 78] and 27 as 
medium quality [16, 18, 30–32, 34, 38, 46, 48–50, 52, 54, 
56, 59, 61, 63, 64, 66, 68, 70–73, 76, 77, 79]. Moreover, the 
outcomes revealed that the level of agreement between 
investigators for data collection as well as for quality 
assessment was appropriate (Kappa = 0.897).

Ultra-processed food and common adverse pregnancy 
outcomes
Our results suggested a significant relationship between 
higher UPF intake and an increased risk of GDM 
(RR = 1.19; 95% CI: 1.10, 1.27;  I2  = 77.5%; p < 0.001; 
n = 44), PE (RR = 1.28; 95% CI: 1.03, 1.59;  I2  = 80.0%; 
p = 0.025; n = 12), but not PTB (RR = 1.06; 95% CI: 0.97, 
1.17;  I2 = 34.2%; p = 0.231; n = 8), LBW (RR = 1.01; 95% 
CI: 0.91, 1.12;  I2 = 52.2%; p = 0.905; n = 4) and SGA infants 
(RR = 1.11; 95% CI: 0.81, 1.52;  I2 = 66.3%; p = 0.532; n = 3), 
(Refer to Table 1, Supplementary Fig. 1).

In the context of GDM, subgroup analysis showed that 
a greater UPFs intake was significantly associated with 
an enhanced risk in cohort studies (vs. cross-sectional) 
(RR = 1.18; 95% CI: 1.09, 1.27;  I2  = 79.3%; p < 0.001; 
n = 31) and case-control studies (RR = 2.06; 95% CI: 1.31, 
3.35;  I2 = 77.7%; p = 0.002; n = 10), particularly in studies 
assessed western dietary pattern (RR = 1.34; 95% CI: 1.01, 
1.76;  I2 = 43.0%; p = 0.040; n = 7) or fast-foods (RR = 1.32; 
95% CI: 1.15, 1.51;  I2  = 79.3%; p < 0.001; n = 22), (vs. 
NOVA classification or sweets consumption), in North 
America (vs. Europe, South America, Asia and Aus-
tralia) (RR = 1.43; 95% CI: 1.27, 1.53;  I2 = 45.4%; p < 0.001; 
n = 10), and across studies with > 100 number of case 
(RR = 1.38; 95% CI: 1.21, 1.58;  I2 = 74.8%; p < 0.001; n = 12)
(vs. < 100 number of case), in studies with > 1000 number 
of participants (RR = 1.33; 95% CI: 1.15, 1.54;  I2 = 76.9%; 
p < 0.001; n = 21)(vs. < 1000 number of participants), in 
studies used FFQ for dietary assessment (RR = 1.27; 95% 
CI: 1.14, 1.43;  I2 = 78.6%; p < 0.001; n = 34) (vs. 24 h recall 
or food record), particularly in studies where the period 
of dietary assessment was at early pregnancy (RR = 1.26; 
95% CI: 1.09, 1.46;  I2 = 80.5%; p = 0.002; n = 19) (vs. pre-
pregnancy or mid-pregnancy). Moreover, subgroup 
analysis for covariates adjustment showed that BMI and 

physical activity may influence the association between 
UPF intake and the risk of GDM (Table 2).

For PE, the subgroup analysis also highlighted that 
greater UPFs intake was significantly associated with an 
enhanced risk in studies assessed western dietary pat-
tern (RR = 2.51; 95% CI: 1.13, 5.57;  I2 = 91.1%; p = 0.023; 
n = 3) or NOVA classification (RR = 1.22; 95% CI: 1.04, 
1.42;  I2  = 0.0%; p = 0.013; n = 3), (vs. sweets consump-
tion), in Asia (vs. Europe or US areas) (RR = 1.65; 95% CI: 
1.07, 2.55;  I2 = 86.1%; p < 0.001; n = 6), and across studies 
with > 100 number of case (RR = 1.57; 95% CI: 1.03, 2.40; 
 I2 = 93.2%; p < 0.001; n = 4)(vs. < 100 number of case), in 
studies with number of < 1000 participants (RR = 1.65; 
95% CI: 1.07, 2.55;  I2 = 86.1%; p = 0.023; n = 6)(vs. > 1000 
number of participants), in participants aged ≥30 years 
(RR = 1.28; 95% CI: 1.07, 1.54;  I2 = 50.4%; p = 0.089; n = 5)
(vs. participants aged < 30 years), in participants with 
pre-pregnancy-BMI > 25 (RR = 1.52; 95% CI: 1.07, 2.15; 
 I2  = 84.7%; p = 0.021; n = 1)(vs. participants with pre-
pregnancy-BMI ≤ 25), in studies used FFQ for dietary 
assessment (RR = 1.38; 95% CI: 1.10, 1.72;  I2  = 82.6%; 
p = 0.005; n = 10) (vs. questions), and particularly in stud-
ies where the period of dietary assessment was at mid-
pregnancy (RR = 1.23; 95% CI: 1.05, 1.43;  I2  = 38.8%; 
p = 0.009; n = 3) (vs. early pregnancy). Furthermore, sub-
group analysis for covariates adjustment showed that 
BMI and physical activity may influence the association 
between UPF intake and the risk of PE (Table 3).

Linear and non-linear dose-response analysis
The linear dose-response analysis (refer to Table  1 and 
Fig.  2) indicates a 27% increase in GDM risk per 100 g 
increment in UPF intake RR = 1.27; 95% CI: 1.07, 1.51; 
 I2  = 81.0%; p = 0.007; n = 9). However, the linear dose-
response analysis for other outcomes was not undertaken 
due to the limited number of studies available.

The non-linear dose-response analysis revealed a posi-
tive non-linear relationship between UPFs intake and 
GDM risk  (Pnonlinearity = 0.034,  Pdose-response = 0.034, Fig. 3), 
but not for PE  (Pnonlinearity = 0.696,  Pdose-response = 0.812, 
Fig.  4). The non-linear dose-response analysis was not 
conducted for other outcomes due to insufficient studies.

Sensitivity analyses and publication bias
Sensitivity analysis across the highest to the lowest 
meta-analysis for GDM, PE, PTB, LBW and SGA infants  
showed no significant influence of any single study  
(Supplemental Fig. 2).

No evidence of publication bias was found in arti-
cles related to the association with an increased risk 
of PE (p = 0.529, Egger’s test; p = 0.891, Begg’s), PTB 
(p = 0.458, Egger’s test; p = 0.473, Begg’s), LBW (p = 0.905, 
Egger’s test; p = 1.00, Begg’s test), and SGA infants 
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Table 2 Subgroup analyses of ultra-processed food intake and the risk of gestational diabetes mellitus (Highest vs. lowest category 
meta-analysis)

Sub-groups Number of effect 
sizes

Relative Risk (95%CI), Pvalue I2 (%),  Pheterogeneity P between

Overall 44 1.19 (1.10, 1.27), < 0.001 77.2, 0.001

Study design 0.013
Cohort 31 1.18 (1.09, 1.27), < 0.001 79.3, < 0.001

Case-control 10 2.06 (1.31, 3.35), 0.002 77.7, < 0.001

Cross-Sectional 3 0.94 (0.79, 1.12), 0.503 0.0, 0.850

Ultra-processed food assessment method 0.998
NOVA food classification 3 0.99 (0.74, 1.32), 0.920 0.0, 0.673

Western diet pattern 7 1.34 (1.01, 1.76), 0.040 43.0, 0.104

Fast-food 22 1.32 (1.15, 1.51), < 0.001 78.8, < 0.001

Sweets consumption 12 1.01 (0.92, 1.11), 0.857 74.9, < 0.001

Region 0.035
North America 10 1.43 (1.27, 1.61), < 0.001 45.4, 0.058

South America 3 0.86 (0.64, 1.17), 0.335 0.0, 0.846

Europe 11 1.13 (1.00, 1.27), 0.051 76.7, < 0.001

Asia 19 1.12 (0.96, 1.29), 0.149 67.9, < 0.001

Australia 1 1.23 (0.76, 1.98), 0.394 –

Number of Case 0.007
< 100 12 0.98 (0.94, 1.02), 0.353 30.7, 0.146

> 100 32 1.38 (1.21, 1.58), < 0.001 74.8, < 0.001

Number of participants 0.215
< 1000 23 1.01 (0.94, 1.09), 0.751 62.0, < 0.001

> 1000 21 1.33 (1.15, 1.54), < 0.001 76.9, < 0.001

Age 0.367
< 30 21 1.16 (1.06, 1.28), 0.002 65.6, < 0.001

≥30 19 1.33 (1.14, 1.54), < 0.001 84.3, < 0.001

Not report 4 0.83 (0.55, 1.26), 0.377 58.6, 0.064

Pre-pregnancy BMI 0.021
≤25 21 1.38 (1.18, 1.60), < 0.001 76.2, < 0.001

> 25 10 1.53 (1.12, 2.08), 0.07 74.6, < 0.001

Not report 13 0.99 (0.94, 1.05), 0.808 55.6, 0.008

Dietary assessment method 0.229
FFQ 34 1.27 (1.14, 1.43), < 0.001 78.6, < 0.001

24 h Recall 7 1.52 (0.99, 2.32), 0.056 73.8, 0.001

food record 3 1.00 (0.96, 1.03), 0.786 25.0, 0.264

Dietary assessment period 0.431
Pre-pregnancy 10 1.25 (0.97, 1.60), 0.088 73.6, < 0.001

Early pregnancy 19 1.26 (1.09, 1.46), 0.002 80.5, < 0.001

Mid-pregnancy 9 1.00 (0.93, 1.08), 0.982 49.3, 0.046

Not reported 6 2.07 (1.21, 3.52), 0.007 85.7, < 0.001

Adjustments

Body mass index 0.903
Yes 33 1.25 (1.12, 1.40), < 0.001 77.1, < 0.001

No 11 1.03 (0.92, 1.16), 0.564 75.0, < 0.001

Smoking status 0.398
Yes 21 1.31 (1.13, 1.51), 0.001 76.7, < 0.001

No 23 1.05 (0.97, 1.13), 0.269 68.4, < 0.001

Physical activity 0.961
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(p = 0.348, Egger’s test; p = 1.00, Begg’s test). Although, 
for GDM, Egger’s test indicated potential publication bias 
(p < 0.001), not corroborated by Begg’s test (p = 0.241). 
As illustrated in Supplemental Fig. 3, the funnel plot was 
symmetrical for the association between the UPFs intake 
and all outcomes, except for studies that reported the risk 
of GDM disease.

Quality of evidence
Utilizing the GRADE scale for quality evaluation, we 
detected the evidence for associations between UPFs 
intake and risk of GDM, PE, PTB, LBW and SGA infants 
was classified as moderate (Refer to Table 1).

Discussion
In the realm of maternal and fetal health, the quality of 
dietary intake during pregnancy is of paramount sig-
nificance. Accumulating evidence suggests a correlation 
between the consumption of UPFs and the deteriora-
tion of diet quality, potentially elevating the risk of vari-
ous health complications [80–82]. This systematic review 
and meta-analysis aimed to elucidate the relationship 
between UPFs intake and adverse pregnancy outcomes 
including GDM, SGA, LBW, PTB, and PE, through an 
integrative analysis of existing studies. Our outcomes 
indicate a significant association between UPFs con-
sumption and increased risks of PE, and GDM either 
prior to or during pregnancy. However, no significant 
association was found between UPFs intake and the risks 
of LBW, SGA, and PTB. Importantly, a 27% increment 
in the incidence of GDM was linked to a 100 g increase 
in UPF intake. Furthermore, a positive, non-linear rela-
tionship between UPF intake and GDM risk was identi-
fied through non-linear dose-response analysis, albeit no 
analogous association was found for PE.

The results of the current work showed a positive asso-
ciation between UPFs consumption and the risk of PE. 

In addition, subgroup analysis revealed this relationship 
to be more pronounced in studies using the NOVA-food 
classification and a Western dietary pattern for UPFs 
intake assessment, compared to those focusing on sweet 
intake. The NOVA classification categorizes foods based 
on the extent of processing, encompassing various UPFs. 
Moreover, the association between UPFs consumption 
and the risk of PE was significant in studies conducted in 
Asia (vs other regions). Prevalence of PE varies globally, 
ranging from 0.2–6.7% in Asia, 2.8–9.2% in Oceania, 2.8–
5.2% in Europe, 2.6–4.0% in North America, and 1.8–
7.7% in South America and the Caribbean [83]. However, 
the high heterogeneity in Asian studies should be noted 
when interpreting this result. Furthermore, a significant 
association was observed in studies involving women 
aged 30 years or older, aligning with the increased PE 
risk associated with advanced maternal age [84]. Addi-
tionally, a significant association was identified between 
PE risk and UPFs intake in women with pre-pregnancy 
BMI higher than 25 kg/m2 (vs BMI ≤25). This aligns with 
previous findings linking excessive weight gain in expect-
ant mothers to an elevated PE risk, with overweight and 
obese mothers facing substantially higher risks [85].

The association between UPFs intake and PE can be 
elucidated through several mechanisms. The risk factors 
for PE, including GDM, maternal obesity, and advanced 
maternal age, are extensively documented in the lit-
erature [84–86]. It has been established that adopting 
healthy lifestyle habits (including dietary patterns) can 
mitigate these risk factors [87]. A higher intake of UPFs 
is associated with a diminished dietary quality, marked 
by an increased consumption of sugars and fats, along-
side a decrease in fiber, protein, vitamins, and miner-
als [88, 89]. UPFs are known to contain elevated levels 
of pro-inflammatory agents such as refined sugars, salt, 
and trans fats. The ingestion of these inflammatory com-
ponents can precipitate oxidative stress and systemic 

Table 2 (continued)

Sub-groups Number of effect 
sizes

Relative Risk (95%CI), Pvalue I2 (%),  Pheterogeneity P between

Yes 26 1.25 (1.09, 1.43), 0.001 76.0, < 0.001

No 18 1.06 (0.97, 1.15), 0.186 70.7, < 0.001

Alcohol intake 0.886
Yes 11 1.24 (1.03, 1.48), 0.019 83.7, < 0.001

No 33 1.14 (1.05, 1.24), 0.001 71.0, < 0.001

Energy intake 0.281
Yes 27 1.15 (1.07, 1.24), < 0.001 78.2, < 0.001

No 17 1.42 (1.14, 1.78), 0.002 74.2, < 0.001
1 Calculated by Random-effects model

FFQ Food Frequency Questionnaire, BMI Body mass index
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Table 3 Subgroup analyses of ultra-processed food intake and the risk of Preeclampsia (Highest vs. lowest category meta-analysis)

Sub-groups Number of effect sizes Relative Risk (95%CI), Pvalue I2 (%),  Pheterogeneity P between

Overall 12 1.28 (1.03, 1.59), 0.025 80.8, < 0.001

Study design 0.435

Cohort 7 1.15 (0.90, 1.46), 0.262 73.3, 0.001

Case-control 4 1.61 (0.93, 2.77), 0.087 90.7, < 0.001

Cross-Sectional 1 1.38 (0.46, 4.13), 0.565 –

Ultra-processed food assessment method 0.103

NOVA food classification 3 1.22 (1.04, 1.42), 0.013 0.0, 0.957

Western diet pattern 3 2.51 (1.13, 5.57), 0.023 91.1, < 0.001

Sweets consumption 6 0.99 (0.81, 1.21), 0.925 59.9, 0.029

Region 0.096

America 3 0.77 (0.46, 1.28), 0.314 10.5, 0.327

Europe 3 1.14 (0.89, 1.46), 0.296 82.1, 0.004

Asia 6 1.65 (1.07, 2.55), 0.023 86.1, < 0.001

Number of Case 0.297

≤100 8 1.15 (0.91, 1.45), 0.073 46.1, 0.073

> 100 4 1.57 (1.03, 2.40), < 0.001 93.2, < 0.001

Number of participants 0.142

< 1000 6 1.65 (1.07, 2.55), 0.023 86.1, < 0.001

> 1000 6 1.06 (0.84, 1.34), 0.604 68.0, 0.008

Age 0.015

< 30 3 2.39 (0.78, 7.30), 0.128 80.0, 0.007

≥30 5 1.28 (1.07, 1.54), 0.008 50.4, 0.089

Not report 4 0.95 (0.72, 1.25), 0.711 70.1, 0.018

Pre-pregnancy BMI 0.353

≤25 1 1.33 (0.50, 3.54), 0.568 –

> 25 6 1.52 (1.07, 2.15), 0.021 84.7, < 0.001

Not report 5 1.07 (0.79, 1.45), 0.661 77.8, 0.001

Dietary assessment method 0.115

FFQ 10 1.38 (1.10, 1.72), 0.005 82.6, < 0.001

Questions 2 0.64 (0.37, 1.11), 0.115 0.0, 0.428

Dietary assessment period 0.039

Pre-pregnancy 0 – –

Early pregnancy 7 1.08 (0.84, 1.40), 0.549 67.1, 0.006

Mid-pregnancy 3 1.23 (1.05, 1.43), 0.009 38.8, 0.195

Not report 2 3.11 (0.74, 13.00), 0.025 81.6, 0.020

Adjustments

Body mass index 0.712

Yes 11 1.30 (1.04, 1.63), 0.023 82.5, < 0.001

No 1 1.02 (0.52, 1.99), 0.954 –

Smoking status 0.441

Yes 4 1.11 (0.88, 1.40), 0.362 74.5, 0.008

No 8 1.43 (0.97, 2.12), 0.070 83.2, 0.001

Physical activity 0.017

Yes 5 2.08 (1.15, 3.75), 0.015 82.5, < 0.001

No 7 1.05 (0.89, 1.23), 0.577 59.0, 0.023

Alcohol intake

Yes 0 – –

No 12 1.28 (1.03, 1.59), 0.025 80.0, < 0.001

Energy intake 0.919

Yes 5 1.26 (0.98, 1.62), 0.710 77.4, 0.001

No 7 1.27 (0.83, 1.95), 0.277 84.5, < 0.001

1 Calculated by Random-effects model

FFQ Food Frequency Questionnaire, BMI Body mass index
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Fig. 2 Forest plots showing the linear dose-response meta-analysis of mortality risk for 100 g change in ultra-processed food consumption in daily 
intake and risk of gestational diabetes mellitus

Fig. 3 Non-linear dose-response indicated associations between UPF intake and the risk of gestational diabetes mellitus
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inflammation [90–92], which are implicated in the patho-
genesis of preeclampsia [93, 94]. Additionally, the pres-
ence of trans fatty acids, added phosphates, and a high 
salt content in UPFs may impair endothelial function 
[95–97], a critical factor in the pathophysiology of hyper-
tension observed in preeclampsia [98]. Furthermore, the 
intake of UPFs can alter the composition and diversity 
of the gut microbiota [99]. Studies have shown that food 
additives commonly found in UPFs, such as emulsifiers, 
sweeteners, and colorants, adversely affect the gut flora 
[100]. The interplay between the gut microbiota and the 
placenta, referred to as the “gut–placenta” axis, is crucial 
for understanding the etiology of PE. Dysbiosis of the gut 
microbiota and bacterial products like lipopolysaccharide 
(LPS) have been identified as promotive of PE [101, 102]. 
According to Kell et al., microbial infection, particularly 
through bacterial products such as LPS (also known as 
endotoxin), which is highly inflammatory, can initiate an 
innate immune response that exacerbates inflammation 
[103]. Hence, it is hypothesized that dysbiosis induced by 
UPFs consumption may play a significant role in the pro-
motion of preeclampsia. Moreover, UPFs intake is posi-
tively associated with a risk of obesity [104], a condition 
marked by insulin resistance and hyperinsulinemia, cru-
cial factors in PE development [105]. Pregnant women 
with obesity and PE exhibit higher leptin levels, correlat-
ing with increased Tumor Necrosis Factor-Alfa (TNF-α), 
Interleukin 6 (IL-6), and C-reactive protein concentra-
tions [106, 107]. Additionally, excessive adipose tissue 
near the reproductive tract is the source of increased 

complement components and fragments in preeclamp-
tic pregnancies. These complement proteins may pro-
mote an imbalance in angiogenic factors (characterized 
by increased production of antiangiogenic factors and a 
decrease in proangiogenic factors). This imbalance leads 
to placental injury, resulting in decreased blood flow to 
the tissue, and is accompanied by changes in cytokines 
levels (decreased IL-10 and increased TNF-α) before the 
onset of PE [108].

Our pooled analysis also revealed that higher UPFs 
intake was related to an increased risk of GDM. This 
association was significant in studies employing cohort 
and case-control designs (as opposed to those with 
cross-sectional methodologies). The inherent recall bias 
in cross-sectional studies that rely on self-reporting, is 
a notable limitation affecting the reliability of outcomes 
[109]. Moreover, this association was more pronounced 
in studies that used Western dietary patterns and fast-
food consumption for the assessment of UPFs intake (vs 
those employing NOVA food classification and sweet 
consumption metrics). The concept of a dietary pattern, 
which represents the aggregate of eating and drinking 
habits, is critical as it exerts a greater impact on health 
and chronic diseases than any individual food item [110]. 
Additionally, the application of the NOVA food classifi-
cation in existing studies is less frequent, suggesting the 
need for further research utilizing this methodology to 
derive more meaningful results. Geographical variations 
were also evident, with significant associations observed 
in studies conducted in America, compared to those in 

Fig. 4 Non-linear dose-response indicated associations between UPF intake and the risk of preeclampsia
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Asia and Europe. This is in context with the differing 
regional prevalences of GDM: 7.1% in North America 
and the Caribbean, 7.8% in Europe and 20.8% in South-
East Asia [111]. Despite the higher prevalence of GDM in 
Asian populations, the greater intake of UPFs in Ameri-
can and European cohorts may have influenced the study 
outcomes [112–115]. Additionally, a positive association 
between UPFs intake and GDM risk was observed in 
studies focusing on women with a pre-pregnancy BMI 
> 25. Previous research indicates that being overweight 
or obese before and during pregnancy is a significant risk 
factor for GDM [116–118]. However, the scarcity of stud-
ies in women with pre-pregnancy BMI > 25 kg/m2kg/m 
suggests the need for more research in this demographic 
for robust conclusions.

Our outcomes also indicated that a 100 g increase in 
UPF intake was associated with a 27% increase in the risk 
of GDM. Moreover, the non-linear dose-response analy-
sis similarly showed a positive, non-linear association 
between the consumption of UPFs and the risk of GDM. 
These findings underscore the significant impact that 
UPF consumption can have on GDM risk. The evidence 
points towards a robust and worrying correlation where 
even moderate increases in UPF intake can precipitate a 
marked rise in GDM risk, highlighting the critical need 
for dietary awareness and intervention among pregnant 
women. This aligns with broader nutritional science, 
emphasizing the importance of minimizing UPF con-
sumption to mitigate not only GDM risk but potentially 
other metabolic disorders as well, given the multitude of 
adverse mechanisms through which UPFs affect glucose 
metabolism and insulin sensitivity.

Pathophysiologically, UPFs intake may increase GDM 
risk through several mechanisms. In pregnant women 
with GDM, pre-pregnancy reduced insulin sensitivity 
and β-cell dysfunction lead to hyperglycemia [119, 120]. 
The hypothesis that excessive sugar intake may aug-
ment body mass, thereby indirectly precipitating insulin 
resistance and subsequent diabetes, is widely recognized. 
Moreover, the liver’s capacity to assimilate and metabo-
lize refined sugars prevalent in UPFs (such as fructose 
and sucrose) may be compromised, leading to augmented 
fat deposition and deteriorated insulin sensitivity [121]. 
Furthermore, insulin resistance may be induced by cos-
metic ingredients present in UPFs. For example, dietary 
additives like carrageenan, employed as a thickening and 
stabilizing agent, may interfere with insulin signaling and 
thus foster insulin resistance [122]. Additionally, UPFs 
intake correlates with increased production of reac-
tive oxygen species and inflammatory biomarkers [123], 
inducing insulin resistance through molecular pathways 
such as β-cell and mitochondrial dysfunction, decreased 

GLUT4 expression, impaired insulin signaling and 
heightened inflammatory responses [124]. Furthermore, 
UPFs often contain packaging materials like phthalates 
and bisphenol A, known to have endocrine disruption 
properties that may contribute to insulin resistance and 
diabetes development [125, 126]. The ingestion of sub-
stantial quantities of UPFs also elevates inflammation, a 
pivotal factor in the genesis of insulin resistance, culmi-
nating in hyperglycemia and the development of GDM 
[127]. A diet replete with saturated fats, trans fats, sug-
ars, and salt, characteristic of high UPFs consumption, 
may contribute to chronic inflammation [128]. Further-
more, excessive UPFs consumption may supplant essen-
tial components of a balanced and nutritious diet. For 
instance, fruits and vegetables are associated with an 
anti-inflammatory effect [129]. In addition, the leaching  
of chemicals from food packaging into UPFs could intro-
duce non-nutritional elements such as phthalates or bisphe-
nol A, potentially eliciting an inflammatory response [130].

The present study did not establish a significant asso-
ciation between UPFs consumption and the risk of LBW. 
This result may be attributable to several factors. Firstly, 
a limited number of studies have evaluated the associa-
tion between UPFs intake and LBW risk. Additionally, 
the intake of high-sugar foods (such as sugar-sweetened 
beverages) has been correlated with an increased risk of 
LBW in non-GDM subjects [34, 40]. This could be attrib-
uted to impaired fetal nutrition due to reduced vascular 
function, potentially induced by oxidative stress, inflam-
mation, and endothelial dysfunction associated with high 
sugar consumption [131]. However, in GDM subjects this 
association may not be found due to the higher glucose 
loads in the fetus [47]. Therefore, additional research is 
warranted in both GDM and non-GDM populations to 
elucidate these relationships comprehensively.

Moreover, SGA was not associated with the intake of 
UPFs according to the pooled analysis of conducted stud-
ies. Although additional studies are necessary to explore 
this relationship further, existing evidence suggests that a 
fast-food dietary pattern may lead to increased fat intake 
and a reduced intake of essential micronutrients crucial 
for fetal development [132]. Maternal UPFs intake is 
linked to lower protein intake, reduced overall nutrition 
quality, and higher intake of trans fats, carbohydrates 
and saturated fats, which may increase the risk of neo-
natal adiposity [133–135]. Furthermore, higher fast-food 
intake during pregnancy has been linked with an elevated 
risk of maternal obesity, which in turn, may increase the 
likelihood of LGA babies [132, 136].

Regarding PTB, the current study found no association 
with UPFs consumption. Previous research has indicated 
that dietary patterns rich in fruits and vegetables are 
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associated with a lower risk of PTB [37, 45]. Inadequate 
nutrition before and during pregnancy can lead to health 
issues for both the mother and fetus, increasing the risk 
of preterm delivery and intrauterine growth retardation 
[137]. The absence of an association between UPFs con-
sumption and preterm delivery in this study could be due 
to various factors, including the need for a higher UPFs 
consumption threshold during pregnancy to manifest 
negative impacts on preterm birth. Additionally, the var-
ied diet of pregnant women, typically including beneficial 
foods such as fruits, vegetables and nuts, may mitigate 
the adverse effects of UPFs.

The current investigation has several crucial strengths 
that make its findings highly significant. Firstly, by pool-
ing all available observational data on the topic, the 
study provides a comprehensive and robust analysis of 
the relationship between UPFs intake and adverse preg-
nancy outcomes. Secondly, the study’s use of a dose-
response analysis adds further weight to its conclusions 
and bolsters our understanding of the link between these 
two factors. However, there are limitations to consider. 
These include potential information and recall biases 
due to the self-reported nature of dietary intake assess-
ments (such as the FFQ) and the absence of specific 
dietary tools for assessing UPFs consumption. Addition-
ally, this meta-analysis included studies that did not use 
NOVA’s specialized dietary assessments. Moreover, die-
tary changes following pregnancy discovery could affect 
results, and the observational nature of the included 
studies precludes causal inference. Despite the inclu-
sion of numerous confounding variables, several factors  
must be cautiously considered in the interpretation of the 
research findings. For instance, the socio-economic status 
of participants influences their dietary habits, while race 
and ethnicity may affect pregnancy outcomes. Further-
more, disparities in access to healthcare services can impact 
dietary choices and pregnancy outcomes. Other health sta-
tuses, such as mental health conditions among pregnant 
subjects, also influence dietary selections and pregnancy 
results [138, 139]. Finally, the availability of data on broader 
categories such as diabetes in pregnancy and hypertensive 
disorders was limited, hindering our ability to conduct a 
comprehensive analysis on these broader categories.

Conclusion
Our outcomes indicate that prior to or during pregnancy, 
UPFs intake is associated with a higher risk of GDM and 
PE. However, no significant link tying UPFs intake to 
SGA, LWB and PTB was established. Importantly, a 100 g 
increment in UPFs intake was related to a 27% increase 
in GDM risk. This study aligns with global trends, 
where a rise in adverse pregnancy outcomes seems to 
align with the escalation of industrialization and the 

corresponding surge in UPFs production and consump-
tion. Investigating the potential linkage between UPFs 
intake and the rise of adverse pregnancy outcomes may 
help in the development of nutrition-centric policies for 
expecting mothers and promote more health-conscious 
decision-making. To further substantiate these findings, 
extensive empirical research is required. Future studies 
should encompass observational research across diverse 
ethnic groups. Moreover, the adoption of more precise 
tools for measuring UPFs consumption is imperative. In 
observational research, it may be challenging to ascer-
tain whether the consumption of UPFs directly contrib-
utes to adverse pregnancy outcomes or if it serves as an 
indicator of other underlying factors. Components of 
UPFs may escalate the risk of negative pregnancy out-
comes. Moreover, UPF consumption could be part of a 
complex interplay affecting other variables that directly 
result in adverse outcomes. For instance, UPF intake 
could influence gestational weight gain, potentially lead-
ing to insulin resistance, which is known to correlate with 
unfavorable pregnancy outcomes, including GDM. Addi-
tionally, the consumption of UPFs may not only dimin-
ish dietary quality but also be linked with various lifestyle 
and dietary factors, such as poor diet quality, thereby 
increasing the risk of adverse pregnancy outcomes [140]. 
The bidirectional correlation between UPF consumption 
and unfavorable pregnancy outcomes also merits consid-
eration. For example, individuals experiencing depression 
or other health conditions might alter their dietary pat-
terns to include a higher intake of UPFs [138]. Evaluating 
changes in UPF consumption over time, utilizing precise 
questionnaires that assess food items classified as UPFs 
according to the NOVA food classification system, and 
their association with other health outcomes affecting 
pregnancy, such as obesity, could offer insights into this 
relationship. Considering these approaches is essential to 
enhance the depth and accuracy of investigations into the 
potential association between UPFs intake and the inci-
dence of adverse pregnancy outcomes.
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